29 Matching Results
Sort By:  
GENERAL
ByBecky Benishek, Ken Bloemer, Sid G, Jonathan Weaver
0000
Updated: 4/21/2025 10:01 AM
What if your students could experience a new type of case study - connected to real-world opportunities with industry experts?Real world case studies help students understand how course concepts coupled with curiosity, making connections, and creating value can lead to new products and businesses. Also, understanding how course concepts apply to real world engineering establishes the relevance of the material, enhancing students' motivation to learn. This collection of case studies can help make entrepreneurially minded learning a part of mainstream engineering education.
Tagscase studies | case study | Real-World Engineering CategoriesClassroom & Courses DisciplinesAll Engineering Disciplines InstitutionsThe Kern Family Foundation | University of Dayton | University of Detroit Mercy
Integrate case students into existing engineering courses and programs to help students understand how technical concepts coupled with curiosity, making connections, and creating value can lead to new products and businesses.
GENERAL
ByBill Kline (In Memoriam), Doug Melton
204141270767
Updated: 9/8/2021 10:31 AM
The increasing complexity of the challenges facing our society and world suggests that engineering graduates must be outstanding problem solvers, designers, and value creators in a variety of settings. The solutions, designs, and systems created must solve technical problems and provide benefit to a variety of stakeholders who may have broad interests in financial, social, and environmental outcomes.Engineering education often focuses on the quantitative skills of problem solving yet solutions to many of the most challenging problems require higher level design, entrepreneurial mindset, and value creation skills. The opportunity to create value, or to fail to, occurs in many settings with engineers commonly called upon to create value in design settings. While being a good designer is a hallmark trait of an engineer, current approaches to teaching design need improvement because a high percentage of products and services introduced to the marketplace fail to find success. An engineering education with emphasis on employing an entrepreneurial mindset would improve the odds of success. Applying methods from systems engineering, this work extends the idea of developing a product to developing a successful solution within a system. That system includes stakeholders, features, and a series of views representing the designed system or product. It is shown that these results are highly complementary to existing conceptions of ‘creating value’ as part of the 3 C’s. Tools and views are presented for classroom use to support the 'creating value' objective through case studies of successful and unsuccessful products. Results from a first run of a class exploring these new approaches are provided in a 2018 ASEE paper.The elements of a ‘value creation’ mindset in an engineering education entrepreneurial context includes:1. Value is a relative concept and is illustrated through selection or choice.2. Creating and capturing value at the enterprise or organizational level can be illustrated in the completeness and alignment of product, business, and execution models. (customer desirability, technically feasible, business viability, organizationally implementable)3. The value of a product or offering can be studied by a. identifying important stakeholders and features and b. developing a product or offering to perform and exhibit the important features identified. 4. Products and systems are successful when they provide capabilities and characteristics that a significant number of stakeholders find attractive and choose over competing options.
DisciplinesComprehensive InstitutionsRose-Hulman Institute of Technology | The Kern Family Foundation
GENERAL
ByMaysam Nezafati, Joe Le Doux, Katherine Shook, Kelvin Pierre
6945022248
Updated: 9/8/2021 10:32 AM
How we used Entrepreneurial Mindset to eliminate bias in design? This card describes the framework of a project, designed for an undergraduate engineering course where students' curiosity is challenged to identify cases of non-inclusive engineering designs and work in teams to propose a solution to the flawed designs using the concepts they learned within the class or outside class. In this assignment, students share their personal experiences of exposure to a biased design as a story with their teammates (see this card) where they discuss the importance and impact of each design, both on a personal and societal level. Potentially a connection could be created between the personal experiences and the topics students choose which acts as an intrinsic motivation tool to work as a team to create value for the negatively affected people. Our experience from piloting the project in an engineering course:This project provides a platform for any engineering student to demonstrate their 3Cs. For the first time this assignment was executed in a major-required second-year analytically-focused biomedical engineering course called “Conservation Principles in Biomedical Engineering”; but the scope of resources shared here, can be customized for any engineering course. Also, based on class size, available infrastructures in the institutions, and format of the class (virtual, in-person, or hybrid) the instructors can modify the logistics or pace of the project phases. The quality of the artifacts significantly improved when students worked as groups of four. To evaluate the effectiveness of integrating EM using this project two implementation schedule was used. In the first approach the project was executed in two consecutive weeks at the end of semester. In the second approach, the project was dispersed through the semester. Both students and instructors found the second method more effective. Project's structure:Preparation: Brainstorming: students are asked to work on their own to look for examples of non-inclusive (biased, flawed) designs. Story 1 (motivation): they share a case of a flawed design that personally affected them or a loved one. In this story, they identify whom the existing process or design was intended to create value for, how bias affected the design, and how this impacted the person they are reflecting about. By having students tell a personal story we hope to make the impact of non-inclusive designs seem more real to them and to increase their motivation and sense of connection to the project. Phase 1:Case study: each student on the team shares their ideas for what they can work on together as a team. The team is tasked with identifying a flawed non-inclusive engineering design they’d like to learn more about and then developing a case study designed to inform and motivate members of the lay public about the flawed design and affected people. Story 2: each team member should write a creative story that illustrates, in an emotionally evocative and concrete way, how the flawed design (the one that they studied) has negatively impacted an individual or group of people. Phase 2:Proposal: the team create an engineering proposal for how to rectify the shortcomings of the existing design. To complete the second report, students use the engineering skills learned in the course to analyze the original design and to propose a new solution or a modification to the existing design, that will create value for the individuals who were not well-served by the original design. The objective of this part of the project is to allow students to see how the skills they have learned in the course can help them better understand how the design works, as well as how to improve it. Story 3: each team member should write a hypothetical story about a positive transformation that can happen to the affected user, if the proposal's modifications are executed successfully. This story should have technical details and have a professional audience. Presentation: (TED talk meets elevator pitch) the students present their work in a 2 minutes pitch presentation, addressing what was the value they created? why they think that is important? How they they want to solve the issue?
DisciplinesComprehensive InstitutionsGeorgia Institute of Technology
REVIEWED GENERAL
ByElise Barrella, Cheryl Bodnar, Maria-Isabel Carnasciali, Juan Cruz, Heather Dillon, plus 3 more
20153103854
Updated: 1/17/2025 9:23 AM
Reviewed: 1/17/2025 4:07 PM
Although there has been a considerable increase in entrepreneurially-minded learning (EML) within engineering education, assessment of EM may still be challenging. Concept maps (cmaps) are a direct assessment method that can provide a snapshot of students’ conceptual understanding of EM, and a number of other complex engineering topics. A cmap provides a visual representation of an individual’s understanding of a topic through the use of nodes (concepts) and links (connections between concepts).This research-based toolkit provides an introduction to designing concept map assignments and scoring the cmaps to assess EML in your undergraduate engineering courses. The toolkit includes short videos, instructional guides for instructors and students, case studies, and templates that (1) introduce concept maps as an EML teaching and learning tool, (2) illustrate four types of concept map activities, (3) demonstrate multiple concept map scoring approaches, and (4) share lessons learned from implementing EM concept maps in different types of engineering courses (e.g., statics, first-year design, technical writing elective) across five different institutions. The modules and resources, including the introductory video below, are available on the EM Concept Map Toolkit site.  
Tagsconcept maps | assessment | toolkit CategoriesClassroom & Courses | Engineering Unleashed Resources DisciplinesComprehensive InstitutionsOther | Rowan University | Merrimack College | University of Washington Tacoma | The Ohio State University | Bucknell University
REVIEWED GENERAL
8856311332
Updated: 6/14/2023 11:53 AM
Reviewed: 10/14/2022 12:06 PM
Many innovative engineering creations throughout history have been designed for an “average” person, meaning that only select people could access the value created by these innovations. In this session, we will explore an assignment in a traditional analytical required engineering course that incorporates social justice concepts by requiring students to use their entrepreneurial mindset in a case study of bias in engineering. Demonstrating their curiosity, students are challenged to identify and explore an historical case of bias in a design solution that resulted in a lack of value creation for either themselves or someone they know. Then, the students integrate this story of personal interest to them with their engineering skill set to develop a conceptual model for both the original solution and a solution that creates value for those individuals who were not served by the original solution. Workshop participants will have the opportunity to draft their own EML/Social Justice assignment and receive feedback on their idea from other participants and the facilitators.
CategoriesClassroom & Courses DisciplinesBiomedical Engineering | Engineering Education | Entrepreneurship InstitutionsGeorgia Institute of Technology | Other
ARTICLE
Resources
EXEMPLAR REVIEWED GENERAL
ByBrittany Nelson-Cheeseman, Deborah Besser, Doug Dunston, Kundan Nepal
179618119754
Updated: 9/8/2021 10:21 AM
Reviewed: 10/14/2022 3:04 PM
The Situational Motivation Scale tool, which is known as SIMS, is a vetted tool which measures student interest and self regulation on specific tasks. Doug Dunston facilitated a "professor-as-the-engineering-student" experience in which University of St. Thomas faculty self-assessed motivation and regulation on an engineering task of their choosing. The experience of assessing motivation, and by extension curiosity, led several engineering faculty to use this tool to assess and increase student intrinsic motivation and self regulation on specific tasks. Assessment of the tool includes a visual representation of motivation and regulation. An umbrella IRB study allowed for faculty to better understand student curiosity and adjust in real time without compromising student anonymity.
TagsM&M - August - 2019 | EUFD 2019 CategoriesCampus & Outreach DisciplinesComprehensive InstitutionsUniversity of St. Thomas
EXEMPLAR REVIEWED GENERAL
ByCheryl Li, Jean Nocito Gobel, Maria-Isabel Carnasciali, Nadiye Erdil, Ronald Harichandran
22574557345
Updated: 1/25/2022 4:27 PM
Reviewed: 10/14/2022 2:57 PM
This CardDeck provides a link to each of the 18 e-learning modules created by the University of New Haven that help develop an entrepreneurial mindset in students. The modules are designed to be integrated into existing engineering and computer science courses. Our efforts, as part of KEEN, are aimed at fostering an entrepreneurial mindset in engineering students. An entrepreneurial mindset applies to all aspects of life, beginning with curiosity about our changing world, integrating information from various resources to gain insight, and identifying unexpected opportunities to create value. We believe that an engineer equipped with an entrepreneurial mindset will be able to create extraordinary value within any type of organization. Development of 18 e-learning modules supporting entrepreneurially minded learning is part of this effort. The University of New Haven, a KEEN partner institution for over 7 years, aims to instill an entrepreneurial mindset in its engineering students by integrating the 18 e-learning modules into existing engineering and computer science courses. The e-learning modules are interactive, structured in a way that will allow integration into regular courses or utilization as supplementary resources, and each are accompanied with a teaching guide. The modules are generic enough to allow their deployment in various courses and majors.The length of each module is 3-9 hours of online student work. Online student work includes the amount of time a student is expected to spend reviewing material in a module as well as the average time needed to complete module assignments, activities or exercises.The development and implementation of the e-Learning Modules has taken placed over the past several years. Several papers and conference presentations document that effort and we invite you to read them - including 2 related papers at the most recent ASEE 2020 conference. Please scroll down to the resources section for direct links to the papers. E-Learning Modules Overview Videos You can see about a two-minute video in the following links to learn more about each module. Adapting a Business to a Changing Climate Applying Systems Thinking to Complex Problems Building Relationships with Corporations and Communities Building, Sustaining and Leading Effective Teams and Establishing Performance Goals Defining and Protecting Intellectual Property Determining Market Risks Developing a Business Plan that Addresses Stakeholder Interests, Market Potential and Economics Developing Customer Awareness and Quickly Testing Concepts Through Customer Engagement Cost of Production and Market Conditions Financing a Business Generating New Ideas Based on Societal Needs and Business Opportunities Innovating to Solve Problems under Organizational Constraints Innovative Client-Centered Solutions Through Design Thinking Learning from Failure Resolving Ethical Issues Role of Product in Value Creation The Elevator Pitch: Advocating for Your Good Ideas Thinking Creatively to Drive Innovation
CategoriesEngineering Unleashed Resources DisciplinesComprehensive InstitutionsUniversity of New Haven | Merrimack College
GENERAL
633690
Updated: 6/22/2020 11:06 AM
We will be capturing all cards related to First-Year Programs Division presentations at the 2020 ASEE Virtual Conference using this CardDeck.  The entire FPD Schedule with links directly to Pathable (the Virtual Conference System) is available at this link: https://drive.google.com/file/d/1mRDLpmOTw6-zomXUYa96OhbsAavsxnZT/view Scroll down to the folders below to view all the links.  To add your card to this deck, please comment at the bottom of this card and link to your card by typing # and then entering in the title of your card.  @Kaitlin Mallouk has already added an example in the comments below.
DisciplinesEngineering Education InstitutionsRowan University | The Kern Family Foundation
ARTICLE
View snapshots from previous years at our KEEN National Conference!
GENERAL
ByElizabeth DeBartolo, Jeanne Christman, Jennifer Bailey, Jennifer O'Neil, Mario Gomes, plus 2 more
258511078
Updated: 1/9/2020 1:07 PM
Climb the walls between departments, find new collaborators and opportunities around your campus.  Are you looking for ways to learn from others and discuss new ideas in an informal, supportive environment? Are you looking for ways to build community and make connections across departments and colleges? Look no further, start a Teaching Circle today!  RIT’s teaching circle was comprised a group of faculty, all interested in learning more about EML. We read The Saber-Tooth Curriculum, which made us think about what we teach, and why we teach it. Teaching Circle members formed the core group of a June 2019 ICE Workshop held on campus, and some continued on to a Fall 2019 Teaching Circle where we are exploring EM201 and continuing to share best practices.      The greatest value from our Teaching Circle so far is that a group of 20 faculty from eight different departments in two different colleges have spent time talking about what we do and connecting around the common theme of mindsets and skillsets for the courses we teach; together, we are building a community of faculty and support system.  How do you support and evaluate quality teaching on your campus?
DisciplinesComprehensive InstitutionsRochester Institute of Technology
A guide to displaying and documenting your work while maximizing your reach and impact.
"Students should spend some time investigating what lines up with them as a person and how they can progress. It is going to be good for them and it's going to be good for society.”
An engineering education with emphasis on employing an entrepreneurial mindset includes value creation, which improves the odds of career and product design success.
Nathalie Lavoine, Assistant Professor, North Carolina State University, is a 2024 KEEN Rising Star. Learn more in her interview!
“Recognizing the humanity of the people that we're working with and how to better connect with them is important.”
ARTICLE
Micromoments are quick activities to teach the 3Cs. Insert them into your existing class!
Samantha Brunhaver, Associate Professor, Arizona State University, is a 2024 KEEN Rising Star. Learn more in her interview!
"The idea that you can have unexpected emergent behaviors from local interactions fascinates me. It's like the Connection piece in the entrepreneurial mindset that can lead to insights that wouldn't have happened without the interacting components. This leads to greater value creation."
1 - 20 of 29 items